
Protecting your IP with

Easy Code Read Protection

Abstract: This technical article discusses a simplified method of implementing code read

protection (CRP). The reduced complexity of this implementation will allow more embedded

design engineers to choose CRP as a way to protect their valuable intellectual property.

Technical Article AL-3000, April 2014

© 2014 Ambystoma Labs Inc. All rights reserved April 2014 | Page 1 of 4 www.ambystomalabs.com

Code Read Protection (CRP) is a valuable tool for the
embedded designer. However, it is not without its
challenges to implement. This technical article describes
a simple way to get the maximum protection offered by
CRP while allowing for updates to software without a
complicated software scheme.

Generally, one starts to think about CRP the first time they
utilize a large company to populate/build their embedded
design. Although contract manufacturers (CM) are a
valuable resource for a budding hardware company, they
should be prevented from having all the tools to reproduce
your product. One quickly realizes that a CM has
everything from board layout, schematic files and a bill of
materials. Without CRP, a suitably savvy individual
associated with your CM could easily pull your code from
shipping product and copy your hard work. The decision
to utilize CRP is clear, but implementation can be
complicated.

Our example design uses an NXP LPC1100 series
processor and the software was created in the
LPCXpresso IDE, however the methods presented here
will be applicable to many embedded processors offering
CRP. CRP involves writing manufacturer specific binary
sequences into flash that instruct a microprocessor to
disable certain types of access to the flash memory where
the embedded firmware is stored. NXP provides 3 levels
of CRP protection and all of them will disable the Serial
Wire Debug (SWD) port. Additionally, writes/reads to flash
can only be done via UART0 In-System Programming
(ISP) once CRP has been activated. (For CRP3 ISP is
disabled and would need to be re-enabled in your code.)

To sum it up: if you choose to invoke CRP you are then

presented with the problem of coming up with a

UART0(ISP) based communication system with

authentication and which sends an encrypted version of

your code over to your product. As much as we like writing

software, we just didn't feel like taking the time to do this.

Additionally on our design, all ports except the SWD were

in use so the decision to come up with a clever solution

for CRP was easy since the ISP port was already

occupied.

Hence, Easy CRP!

Before you proceed, decide exactly what you intend to do

with CRP. Do you?

1. Want to protect your code.

2. Find it impractical and unnecessary to allow for field

firmware upgrades.

3. Want to make sure that when you have 1,000 pieces

of your product in inventory and suddenly come up with

a game changing new feature, you can still update the

code in your inventory, instead of scrapping it or waiting

to build fresh product.

Is the answer yes to all? Then our method may be a good

choice for you.

Technical Article AL-1981 Ambystoma Labs Inc.

In this method, we invoke NXP's level 3 CRP. This means code cannot be read from or written to flash via any port. To

facilitate performing updates to our product we provide a way within our software to instruct the device to erase its flash.

Once the flash is erased, the microcontroller is back in a virgin state and can be programmed via the SWD or ISP ports.

That's it! We tell the device to keep everything secret with CRP 3 and then we give it a way to be told to erase its flash.

Once the flash is erased and the microcontroller is power cycled (NXP devices read CRP bits during power up, not

during reset) the device is in a virgin state and can be reprogrammed. Finally, we design the erase such that it cannot

occur accidentally.

Now here is the code…

Again, this is NXP LPC1100 series using the LPCXpresso IDE. The first part sets the stage for CRP 3.

In driver_config.h:

#define CONFIG_ENABLE_DRIVER_CRP 1

//#define CONFIG_CRP_SETTING_NO_CRP 1

#define CONFIG_CRP_SETTING_CRP3_CONSUME_PART 1

Next you want the erase to occur during start up and never again. This will prohibit accidental erasure in normal operation.

Due to this, this part will be in main.

In main.c with the #includes:

#include "driver_config.h"

#define IAP_ADDRESS 0x1FFF1FF1

typedef unsigned int (*IAP)(unsigned int[], unsigned int[]);

static const IAP iap_entry = (IAP) IAP_ADDRESS;

Flash erase and retrieving the guid or device serial number require using the In Application Programming (IAP)

commands. This is how NXP does it.

Then at the very beginning of main:

int main (void)

{

 uint32_t c, c2; //General use counter variables

 uint32_t command[5], result[4]; //Used by the IAP commands

 //This is the part to erase flash for software update.

 //Look for P1_11 high

 //Clear personality bits

 LPC_IOCON->PIO1_10 &= 0b11111111111111111111101111000000; //This is the Fault LED

LPC_IOCON->PIO2_0 &= 0b11111111111111111111101111000000; //This is the 2.4GTX LED

 LPC_IOCON->PIO1_11 &= 0b11111111111111111111101111000000; //This is the 5.5GTX LED

 //Set pull down resistors

 LPC_IOCON->PIO1_10 |= 0b1000;

 LPC_IOCON->PIO2_0 |= 0b1000;

 LPC_IOCON->PIO1_11 |= 0b1000;

 //Set up the fault light (1_10) as indicator for flash erase operation

 LPC_GPIO[1]->DIR |= 0b10000000000; //This sets the data direction register for bit 10 of port 1 for output.

 LPC_GPIO[1]->MASKED_ACCESS[0b10000000000] = (0b00000000000); // We normally put all the zeros in the code just

 to keep track of which bit we are writing

© 2014 Ambystoma Labs Inc. All rights reserved April 2014 | Page 2 of 4 www.ambystomalabs.com

Technical Article AL-1981 Ambystoma Labs Inc.

© 2014 Ambystoma Labs Inc. All rights reserved April 2014 | Page 3 of 4 www.ambystomalabs.com

 //Look for 5.5GHz light high and 2.4 GHz light low

 if ((LPC_GPIO[1]->MASKED_ACCESS[0b100000000000])&& !(LPC_GPIO[2]->MASKED_ACCESS[0b1]))

 {

 LPC_GPIO[1]->MASKED_ACCESS[0b10000000000] = (0b10000000000); //Set fault light on to indicate first part

 of erase procedure

 for (c=0xffffff; c>0; c--); //Wait about 5 seconds

 //Look for 5.5GHz light low and 2.4 GHz light high

 if (!(LPC_GPIO[1]->MASKED_ACCESS[0b100000000000])&& (LPC_GPIO[2]->MASKED_ACCESS[0b1]))

 {

 LPC_GPIO[1]->MASKED_ACCESS[0b10000000000] = (0b00000000000); //Set fault light off to indicate second

 part of erase procedure

 for (c=0xffffff; c>0; c--);//Wait about 5 seconds

 //Look for 5.5GHz light high and 2.4 GHz light low

 if ((LPC_GPIO[1]->MASKED_ACCESS[0b100000000000])&& !(LPC_GPIO[2]->MASKED_ACCESS[0b1]))

 {

 LPC_GPIO[1]->MASKED_ACCESS[0b10000000000] = (0b10000000000); //Set fault light on to indicate

 last part and commitment of erase procedure

 for (c=0xffffff; c>0; c--);//Wait about 5 seconds. At this point the device could be reset or power

 cycled to terminate erase procedure

 LPC_GPIO[1]->MASKED_ACCESS[0b10000000000] = (0b00000000000);//The fault light is turned off and the

 erase procedure has commenced. We now wait a quasi random period of about 0 to 5 seconds before

 erasing the device.

 //This prohibits someone from anticipating when they could terminate the erase process and potentially

 extracting a portion of the code.

 //this part uses the guid serial number to create a quasi random wait period

 command[0] = 58;

 iap_entry(command, result);

 c=(result[1]&0xff0000)|(result[2]&0xff00)|(result[3]&0xff); //We take a byte of the last 3 guid words

 to form a quasi random number. For reference 24 bits high is a little over 5 seconds with 48MHz clock

 while(c) c--;

 //And we erase the flash!

 command[0] = 50;

 command[1] = 0;

 command[2] = 1;

 iap_entry(command, result);

 command[0] = 52;

 command[1] = 0;

 command[2] = 1;

 command[3] = 48000;

 iap_entry(command, result);

 //At this point the device is in a virgin state and the CRP bytes have been cleared.

 //For NXP microcontrollers the device must be power cycled in order for the cleared CRP state to be

 recognized.

 //Pointless to have a reset since flash is blank and the next command won't load.

 }

 }

 }

//If we did not complete the erase command sequence, then we boot normally

The rest of your code goes here.

As you can see from the code, the process goes as follows:

1. On power up or reset, look for 1_11 high and 2_0 low. Set 1_10 high, then wait 5 seconds.

2. Look for 2_0 high and 1_11 low. Set 1_10 low, then wait 5 seconds.

3. Look for 1_11 high and 2_0 low. Set 1_10 high, then wait 5 seconds.

4. Set 1_10 low. Wait quasi-random period derived from quid serial number and then erase the flash.

Technical Article AL-1981 Ambystoma Labs Inc.

© 2014 Ambystoma Labs Inc. All rights reserved April 2014 | Page 4 of 4 www.ambystomalabs.com

Below is shown the sequence to erase the flash, if it were performed manually. On the example board, the I/O bits
1_10, 1_11 and 2_0 are available on test pads used for a factory programming fixture. Manual execution of the erase
sequence is shown simply to better illustrate the process. Ideally, one would script this to run on their factory
test/programming setup.

Use a probe with a series resistance Within 5 seconds, apply power to Within 5 seconds, apply power to
to apply power to 1_11. Then apply 2_0 and wait for 1_10 to extinguish. 1_11 and wait for 1_10 to illuminate.
power to the board or perform reset.
1_10 will illuminate indicating
beginning of the erase sequence.

Once 1_10 illuminates, within 5 seconds remove power from 1_11. 1_10 will then extinguish
and the flash will be completely erased within 5 seconds. After waiting the full 5 seconds,
power cycle the board (it is not sufficient to perform a reset) and the device will be back in a
virgin state able to be programmed through the SWD.

Richard J Moldovan

Studied Electrical Engineering at Florida Atlantic University. After graduating with a BSEE in
1999, he spent 15 years designing products in the wireless telecom, wireless infrastructure,
wireless networking and defense electronics sectors. He is the founder and CEO of Ambystoma
Labs Inc.

Email: richard.moldovan@ambystomalabs.com

© 2014, Ambystoma Labs Inc. All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER
THIS TECHNICAL ARTICLE IS FOR INFORMATIONAL PURPOSES ONLY AND IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER
INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.
NO LICENSE, EXPRESS OR IMPLIED, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.
AMBYSTOMA LABS INC. DISCLAIMS ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO
IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. AMBYSTOMA LABS INC. DOES NOT WARRANT OR REPRESENT THAT
SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

Product or company names mentioned herein may be the trademarks of their respective owners.

